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1. Introduction

A very attractive mechanism for explaining the origin of the baryon asymmetry of the

Universe (YB ≡ (nB − n̄B)/s ' 8.7 × 10−11) is baryogenesis through leptogenesis [1, 2].

Leptogenesis scenarios naturally appear within the standard model minimally extended to

include the see-saw mechanism [3], because all the conditions [4] required for generating a

cosmic lepton asymmetry are generically satisfied in the decays of the see-saw related heavy

singlet neutrinos: (i) The Majorana nature of their masses is a source of lepton number vio-

lation; (ii) Complex Yukawa couplings induce CP violation in the interference between the

tree level and loop decay amplitudes; (iii) For a heavy Majorana mass scale ∼ 1011±3 GeV,

sizable deviations from thermal equilibrium in the primeval expanding Universe can occur

at the time the heavy neutrinos decay. Partial conversion of the lepton asymmetry into

a baryon asymmetry then proceeds by means of anomalous B + L-violating electroweak

sphaleron interactions [5] that are standard model processes. Qualitatively it is then al-

most unavoidable that a lepton (and hence a B − L) asymmetry is induced in the decays

of the see-saw singlet neutrinos and, since no standard model reaction violates B −L, this

asymmetry survives until the present epoch. The question of whether leptogenesis is able

to explain the puzzle of the baryon asymmetry of the Universe is then a quantitative one.

The quantitative analysis of leptogenesis has become more and more sophisticated in

recent years, taking into account many subtle but significant ingredients, such as various
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washout effects [6 – 10], thermal corrections to particle masses and CP violating asymme-

tries [11], and spectator processes [12, 13]. The latter are B − L conserving processes,

such as standard model gauge interactions, some Yukawa interactions involving the heavi-

est fermions, and electroweak and strong non-perturbative ‘sphaleron’ interactions. These

processes do not participate directly in the generation or washout of the asymmetries (hence

the name ‘spectator’), but have important effects in determining the asymmetric densities

of the various particles, mainly by imposing certain relations among the chemical potentials

of different particle species [12]. A detailed analysis of how spectator processes affect the

washout back-reactions and concur to determine the final value of the baryon asymmetry

has been recently presented in [13].

In spite of all these refinements, one potentially very significant aspect of leptogenesis

has been only rarely addressed [14 – 16], and that is flavor. Neglecting flavor issues is,

however, justified only if the process of leptogenesis is completed at a rather high tem-

perature, T > 1012 GeV. A reliable computation of the lepton and baryon asymmetries

when leptogenesis occurs in the intermediate or low temperature windows must include

flavor effects. In this paper, while taking into account all the effects discussed in [13], we

introduce in the analysis additional important phenomena that have to do with the flavor

composition of the lepton states involved in leptogenesis.1 In particular, we focus on the

decoherence effects that are induced by the charged lepton Yukawa interactions on the

lepton doublets produced in the decays of the heavy neutrinos. As soon as these Yukawa

interactions approach equilibrium, they act essentially as measuring devices that project

all the lepton densities onto the flavor basis. Lepton number asymmetries and washout

effects then become flavor dependent, and this can lead to a final baryon asymmetry that

is different in size and possibly even sign from the one that would arise if flavor issues were

irrelevant.

The plan of this paper is as follows. In section 2 we present the main physics ideas

that underlie the most important effects of flavor in leptogenesis, and derive the relevant

results in a qualitative way. In section 3 we present the network of flavor dependent Boltz-

mann equations, including all the spectator processes discussed in [13]. In section 4 we

separately analyze each of the relevant temperature regimes: we impose the appropriate

equilibrium conditions and discuss their implications for the network of Boltzmann equa-

tions. We also present results for a set of representative flavor structures and for different

temperature regimes. In section 5 we compare our results to what is obtained when flavor

effects are neglected or irrelevant, and we explain the main mechanism underlying the large

enhancements of B −L that flavor effects can induce. In section 6 we summarize our main

results.

2. The basic ideas

In this section we study leptogenesis within temperature ranges well below 1013 GeV, where

lepton flavor issues can have an important impact on the way leptogenesis is realized. A

1In our previous work [13] we imposed certain flavor alignment conditions, whereby the effects discussed

in this paper become irrelevant.
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proper treatment of the decay and scattering processes occurring in a thermal bath that

consists of a statistical mixture of various flavor states should be carried out within a density

matrix formalism, as discussed for example in [14]. Here we follow a simpler approach that

is based on a physically intuitive formulation of the problem, and allows us to obtain all the

qualitative features of the possible solutions. The results we derive here agree well with

what will be obtained in section 4 by solving numerically the detailed flavor-dependent

Boltzmann equations that are derived in section 3.

2.1 Flavor CP violating effects

The heavy singlet neutrinos Nα needed for the see-saw model decay into lepton and antilep-

ton doublets, implying lepton number violation. We denote the lepton doublets produced

in the Nα decays with the same index α = 1, 2, 3:2

Γα ≡ Γ(Nα → `α H),

Γ̄α ≡ Γ(Nα → ¯̀′
α H̄).

CP -violation in Nα decays can manifest itself in two different ways:

1. Leptons and antileptons are produced at different rates,

Γα 6= Γ̄α. (2.1)

2. The leptons and antileptons produced in Nα decays are not CP conjugate states,

CP (¯̀′α) ≡ `′α 6= `α. (2.2)

If the rate of charged lepton Yukawa interactions is much slower than the rate of the heavy

neutrino (N−`) Yukawa interactions, flavor issues can be neglected since, regardless of their

flavor composition, `α and ¯̀′
α remain coherent states between two successive interactions. In

this case only the effect in eq. (2.1) is important. Indeed, leptogenesis studies have generally

concentrated on this first effect. The situation is, however, different if leptogenesis occurs

when the processes mediated by the τ (and possibly µ) charged lepton Yukawa couplings

are faster than the N − ` Yukawa interactions (a sufficient condition for this is that these

processes occur at a rate comparable to the expansion rate of the Universe). Then, `α

and ¯̀′
α are no longer the interacting states populating the thermal bath and `i and ¯̀

i with

i = τ, (µ, e) should be considered instead. The second effect in (2.2) can then become of

major importance for the generation of cosmic asymmetries.

The amount of lepton asymmetry produced per Nα decay (α = 1, 2, 3) is

εα =
Γα − Γ̄α

Γα + Γ̄α
. (2.3)

In order that non-vanishing εα asymmetry would arise, the two sets of three states `α and

`′α cannot form an orthogonal basis because, to get CP violation from loops, it is required

that the lepton doublet coupled to the external Nα (the decaying heavy neutrino) couples

2The subindex in `1,2,3 bears no relation to the neutrino mass eigenstates ν1,2,3.
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also to a virtual Nβ (with β 6= α) appearing in the loop. Assuming a hierarchical pattern

for the heavy Nα masses Mα, and given the non-orthogonality of the `
(′)
1,2,3 states, the most

natural situation is then that any asymmetry produced in N2,3 decays is quickly erased by

fast L violating interactions involving N1. One can still envisage a situation in which `3 ⊥/`2

is responsible for ε2 6= 0, but an approximate orthogonality `2 ⊥ `1 prevents ε2 from being

washed out by the N1 lepton number violating processes. In this case a lepton asymmetry

produced in N2 decays can survive until all the L violating processes involving N1 freeze-

out. However, if this freeze-out occurs after lepton flavor dynamics has become important,

then all the `
(′)
α will be effectively projected onto `τ,(µ,e) flavor states. Then additional

‘flavor alignment’ conditions are necessary in order to preserve the ε2 asymmetry, as for

example `1 ∝ `e and `2,3 ⊥ `e. Models that realize this scenario have been studied for

example in [14, 17, 18]. In the following we disregard this possibility, and concentrate on

the decay of the lightest heavy neutrino N1 (and on ε1) as the dominant source of a cosmic

lepton asymmetry.

If during leptogenesis the (required) deviations from thermal equilibrium are not large,

inverse decays and other washout processes become important to determine the amount

of ε1 asymmetry that can be effectively converted into a baryon asymmetry by the B + L

violating electroweak sphaleron processes. In the cases where the N1 heavy neutrinos have

an initial thermal abundance, or when thermal abundance is reached due to inverse decays

and other scattering processes, it is customary to express the present density of cosmic

baryon asymmetry relative to the entropy density s as follows:

nB

s
= −κs ε1 η. (2.4)

The numerical factor κs ' 1.38 × 10−3 accounts for the B − L entropy dilution from

the leptogenesis temperature down to the electroweak breaking scale, as well as for the

electroweak sphalerons B − L → B conversion factors. The factor η, that can range

between 0 and 1, is the so called efficiency (or washout) factor and accounts for the fraction

of lepton asymmetry surviving the washout processes. If N1 decays occur strongly out of

equilibrium, then all back-reactions are negligible and η ≈ 1. On the other hand, values of

η ∼ 10−2 − 10−3 that are typical of strong washout regimes, when deviations from thermal

equilibrium are mild, can still yield successful leptogenesis while ensuring at the same time

that nB/s is largely independent of initial conditions.

When M1 À 1012 GeV, successful leptogenesis requires that the N1 − `1 couplings

are sizable and, in particular, larger than all the charged lepton Yukawa couplings. Then

in the relevant temperature window, around T ≈ M1, charged lepton Yukawa processes

are much slower than the processes involving N1 (and also slower than the rate of the

Universe expansion). In this regime, the composition of the two states `1 and ¯̀′
1 in terms

of the lepton flavor states `i (i = τ, µ, e) is irrelevant since the doublet states produced

in the decays keep coherence between two different scatterings involving N1. However, if

leptogenesis occurs at lower temperatures, processes mediated by the τ Yukawa coupling

(and for T <∼ 109 GeV also the processes mediated by the µ Yukawa coupling) become

faster than the reactions involving N1. Then `1 and ¯̀′
1 lose their coherence between two
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subsequent L-violating interactions. Before they can rescatter in reactions involving N1,

they are projected onto the lepton flavor basis with respective probabilities for each flavor

i:

K1i = |〈`1|`i〉|2 and K̄1i = |〈¯̀′1|¯̀i〉|2 (CP (¯̀i) = `i). (2.5)

In the following, we drop the index 1 in K1i, K̄1i (as well as in the decay rates Γ1, Γ̄1),

leaving understood that we always refer to N1 related quantities. We will also concentrate

exclusively on the medium and low temperature regimes, in which the charged lepton

Yukawa interactions effectively ‘measure’, at least in part, the flavor composition of `
(′)
1 .

We distinguish the following possibilities:

1. Alignment: if the i = τ (or i = τ, µ) Yukawa processes are in equilibrium, but both

`1 and `′1 are aligned or orthogonal to one flavor i (Ki = K̄i = 1 or 0), leptogenesis

reduces to a one-flavor problem, much like the unflavored case of the high temperature

regimes. Different flavor alignments mainly affect just the way in which the lepton

asymmetry gets distributed between lepton left- and right-handed states (the latter

being sterile with respect to all L-violating processes) and this yields numerical effects

not larger than a few tens of percent. A detailed analysis of the various aligned cases

has been recently presented in [13].

2. Non-alignment, with only the τ (but not the µ and e) Yukawa processes in equilib-

rium: the µ and e flavor components of `1 and ¯̀′
1 are not disentangled from each

other during leptogenesis. It is then convenient to introduce two combinations of

the µ and e flavors, `b and ¯̀′
b, that are orthogonal to, respectively, `1 and ¯̀′

1, thus

implying Kb = K̄b = 0. The two combinations of µ and e, `a and ¯̀′
a, that are

orthogonal to, respectively, `b and ¯̀′
b, satisfy Ka = 1−Kτ and K̄a = 1− K̄τ (in gen-

eral CP (¯̀′a,b) 6= `a,b). In this case, even in the absence of any particular alignment

condition, leptogenesis can be treated as an effectively two-flavor problem.

3. Non-alignment, and both τ and µ Yukawa interactions fast: all the lepton flavor

components of `
(′)
1 are effectively resolved, and the thermal bath is populated by the

(CP conjugate) flavor states `i and ¯̀
i (i = e, µ, τ). The full three-flavor problem

has to be considered in this case. (The onset of thermal equilibrium for the elec-

tron Yukawa coupling occurs at temperatures too low to be relevant for standard

leptogenesis scenarios, but would not add qualitative changes to this picture).

In the rest of this paper we address the lepton flavor issues for leptogenesis in the above

cases 2 and 3. We show how these issues have a significant impact on the way leptogenesis

is realized in the intermediate and low temperature regimes.

2.2 Lepton flavor asymmetries

The CP asymmetry for N1 decays into the `j lepton flavor is defined as

εj
1 =

Γ(N1 → `jH) − Γ̄(N1 → ¯̀
jH̄)

Γ + Γ̄
≡ Γj − Γ̄j

Γ + Γ̄
. (2.6)
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Since, by definition, Kj = Γj/Γ and K̄j = Γ̄j/Γ̄, we can conveniently express εj
1 as

εj
1 =

Γ Kj − Γ̄ K̄j

Γ + Γ̄
=

Kj + K̄j

2
ε1 +

Kj − K̄j

2
' ε1 K0

j +
∆Kj

2
. (2.7)

Here ε1 is the total asymmetry in N1 decays defined in eq. (2.3), ∆Kj ≡ Kj − K̄j, and

K0
j ≡ Γ0

j/Γ
0 represents the ratio of the (CP conserving) tree level decay amplitudes, with

K0
j = K̄0

j . In the last equality in eq. (2.7), the first term, proportional to ε1, corresponds

to CP violating effects of the first type [eq. (2.1)], the second term, proportional to ∆Kj ,

is an effect of the second type [eq. (2.2)] since it vanishes when CP (¯̀′1) = `1, and higher

order terms of O(∆Kj · ε1) are neglected.

For temperature regimes where the flavor states `j are the ones relevant for leptogenesis,

rather than the `α states, eq. (2.4) should be replaced with

nB

s
= −κs

nf∑

j=1

εj
1 ηj , (2.8)

where nf = 2(3) is the relevant number of ‘active’ flavors in the medium (low) temperature

regime. In these regimes, off-shell ∆L = 2 washout processes involving in particular N2,3

are generally negligible, and hence all the relevant washout processes involve just the heavy

neutrino N1 and are therefore associated with the flavor projectors Kj. Since, as will be

discussed in more detail in section 5, the efficiency factors are, to a good approximation,

inversely proportional to the washout rates, we can write ηj ' min
(
η/K0

j , 1
)
, where η

represents the washout factor one would obtain neglecting flavor effects. The value of ηj

saturates to unity when K0
j ≈ η and, in the cases we have studied numerically, this typically

occurs for K0
j ≈ few × 10−2. In these cases, one can think of the decay of N1 → `jH as

one that proceeds much like strongly out-of-equilibrium decays. However, if K0
j ¿ 1, the

condition
∑

i K0
i = 1 implies that for (one or two of the) other flavors, the back reactions

are rather fast and in particular can be quite effective in populating the N1 states, so as

to keep their abundance close to thermal during a relevant part of the leptogenesis era.

As in the standard thermal leptogenesis scenarios, this ensures independence from initial

conditions and, moreover, that a sizable amount of the asymmetry, much larger than a

fraction K0
j , can end up surviving in the `j flavor. Inserting eq. (2.7) into eq. (2.8) gives:

nB

s
≈ −κs

{
nf ε1η + η

∑
i

∆Ki

2Ki
K0

i
>∼ η for all i

η(nf − 1)ε1 + K0
j ε1 + η

∑
i6=j

∆Ki

2Ki
+

∆Kj

2 K0
j

<∼ η, K0
i6=j > η

(2.9)

We note the following:

1. In the second line of this equation, that corresponds to the situation in which the

value of ηj saturates to ≈ 1, the first three terms are suppressed at least as η, while

the last term is not.

2. When K0
j ¿ η, an alignment condition is approached [13]. Flavor effects become

strongly suppressed here when all ∆Ki vanish, as is always the case in the two flavor

situations (see section 4).
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3. If ∆Ki = 0 for all i, that is in the absence of CP violating effects of the type of

eq. (2.2), and if K0
i > η for all i, that is away from alignment conditions, then the

final baryon asymmetry is always enhanced by a factor nf with respect to the case

in which flavor effects are irrelevant (or are neglected). This enhancement occurs

independently of the particular values of the K0
i , as is clearly seen from figure 1,

and it holds also with respect to the aligned cases discussed in [13] since alignment

effectively enforces the condition nf = 1. It is easy to understand the reason for

the nf enhancement. When the total decay rates are projected onto the flavor i,

each flavor asymmetry gets reduced compared to the total asymmetry: εi
1 ∼ ε1K

0
i .

However, this is compensated by a suppression of the corresponding washout factor,

ηi ∼ η/K0
i . Then the sum over flavors yields the nf enhancement.

4. When `1 has approximately equal projections onto the different `i doublets, implying

that K0
i ≈ 1/nf for all i, the result of the previous point still holds, regardless of the

particular values ∆Ki 6= 0. This can be easily seen from the first line of eq. (2.9) by

noting that
∑

i ∆Ki = 0.

5. In the general situation, the terms proportional to ∆Ki do not vanish. Let us stress

that |∆Ki/ε1|, being the ratio of two (higher order) CP violating quantities, is not

constrained to particularly small values and can well be sizeably bigger than unity.

This means that the effects of CP (¯̀′) 6= ` can be the dominant ones in determining

the size of the final baryon asymmetry. Moreover, since the signs of the ∆Ki are

not directly related to the sign of ε1, it is clear that one cannot infer in a model

independent way the sign of the cosmic baryon asymmetry only on the basis of ε1.

This situation (dominance of the ∆Kj effect) is even more likely when one K0
j is

very small and ηj ≈ 1. Then, as can be seen from the second line in eq. (2.9), the

term ∆Kj/2 being not suppressed by the small value of η can easily dominate over

all other terms.

2.3 Dependence on lagrangian parameters

We now proceed to express the various relevant quantities — ε1, εj
1, ∆Kj and K0

j — in

terms of the lagrangian parameters. In the mass eigenbasis of the heavy neutrinos Nα and

of the charged leptons (ei denote the SU(2) singlet charged leptons), the leptonic Yukawa

and mass terms read:

LY = −1

2
MαN̄ c

αN c
α − (λαi Nα `i H̃† + hi ei `i H

† + h.c.). (2.10)

Explicit computation of the vertex and self-energy contributions to εj
1 with this lagrangian

yields [19]:

εj
1 =

−1

8π(λλ†)11

∑

β 6=1

Im

{
λβjλ

∗
1j

[
3

2
√

xβ
(λλ†)β1 +

1

xβ
(λλ†)1β

]}
, (2.11)
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where xβ = M2
β/M2

1 . The coefficient of (λλ†)β1 within square brackets in eq. (2.11) comes

from the leading term in the expansion for xβ À 1 of

√
xβ

1 − xβ
+

√
xβ

(
1 − (1 + xβ) ln

1 + xβ

xβ

)
= −3

2
x
−1/2
β − 5

6
x−3/2 + O(x−5/2). (2.12)

The first term in the l.h.s. originates from self-energy type of loop corrections, while the

second term corresponds to the proper vertex correction. The coefficient of the second

term (λλ†)1β in square brackets in (2.11) comes from the self-energy type of diagram with

‘inverted’ direction of the fermion line in the loop, and corresponds to the leading term in

the expansion (1 − xβ)−1 = −x−1
β + O(x−2

β ). Eq. (2.11) holds when the mass splittings

between the heavy neutrino masses are much larger than the decay widths, Mβ−M1 À Γβ,1.

The lowest order expression for the flavor projectors reads:

K0
j = K̄0

j =
λ1jλ

∗
1j

(λλ†)11
. (2.13)

By summing eq. (2.11) over the flavor index we obtain the total asymmetry:

ε1 =
−3

16π(λλ†)11

∑

β 6=1

Im

{
1

√
xβ

(λλ†)2β1

}
. (2.14)

We do not need to separately calculate ∆Kj in terms of the lagrangian parameters since,

from eq. (2.7), ∆Kj/2 = εj
1 − ε1 K0

j . As was first noted in ref. [19], the term (λλ†)1β

contributes to the flavor asymmetry εj
1 in eq. (2.11), but — since (λλ†)β1(λλ†)1β is real —

it does not contribute to the total asymmetry ε1 in eq. (2.14). We conclude therefore that

it corresponds to a CP violating effect of the second type.

In the basis that we are using, which is defined by diagonal matrices for the heavy

neutrino masses Mα and for the charged lepton Yukawa couplings hj , the λαj couplings

can be conveniently written in the Casas-Ibarra parametrization [20]:

λαj =
1

v

[√
M R

√
m U †

]

αj
(2.15)

where v = 〈H〉 is the Higgs vacuum expectation value, M = diag(M1,M2,M3) is the

diagonal matrix of the heavy masses, m = diag(m1,m2,m3) is the diagonal matrix of the

light neutrino masses, R = v M−1/2 λU m−1/2 is an orthogonal complex matrix (RT ·R = I)

and U is the leptonic mixing matrix. With this parametrization, the term (λλ†)2β1 that

controls the total asymmetry in eq. (2.14) is given by

(λλ†)2β1 =
M1Mβ

v4

(
∑

i

miR
∗
1iRβi

)2

, (2.16)

while the term (λβjλ
∗
1j) (λλ†)β1, that gives the leading contribution to εj

1 in eq. (2.11), is

given by

(λβjλ
∗
1j) (λλ†)β1 =

M1Mβ

v4

(
∑

i

miR
∗
1iRβi

) 


∑

k,l

√
mkmlRβlR

∗
1kU

∗
jlUjk


 . (2.17)
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Eqs. (2.16) and (2.17) show that, if in the basis where the light and heavy neutrino Ma-

jorana masses are real, R were a real orthogonal matrix, two very intriguing consequences

would follow:

1. The total asymmetry would vanish, ε1 = 0, while, in general, εj
1 6= 0. This is a

surprising possibility for leptogenesis.

2. The asymmetries εj
1, which involve the imaginary part of eq. (2.17), would depend

only on the CP violating phases present in U , which (in principle) are measurable in

low energy experiments.

This situation would be quite different from the one usually considered in leptogenesis

scenarios, in which the final baryon asymmetry, being proportional to ε1, depends through

the matrix R on all the low energy and high energy parameters. It remains to be seen if a

real matrix R can naturally arise in some model.

3. The network of Boltzmann equations

We consider the scenario in which the heavy neutrino masses are hierarchical, M1 ¿ M2,3,

and consequently the lepton asymmetry is generated mainly via the CP and lepton number

violating decays of the lightest singlet neutrino N1 to the lepton doublets `1 and ¯̀′
1. The

important processes involving these states are the following (all the γ’s below denote the

thermally averaged rates):

• N1 decays and inverse decays, with rates γD = γ(N1 ↔ `1 H) and γ̄D = γ(N1 ↔
¯̀′
1 H̄).

• ∆L = 1 Higgs-mediated scattering processes with rates such as γSs = γ(`1 N1 ↔ Q3 t̄)

and γSt = γ(`1 Q3 ↔ N1 t), where Q3 and t are respectively the third generation quark

doublet and the top SU(2) singlet, as well as those involving gauge bosons, such as

in `1N1 → HA (with A = W 3,± or B). CP violating effects might be numerically

important in these 2 ↔ 2 scatterings [8, 9]. However, they do not add qualitatively

new features to the analysis. Therefore we neglect CP violation in all these processes

and accordingly we use the tree level expression for the flavor projectors K̄j, Kj ' K0
j .

• The s-channel scattering processes γNs = γ(`1 H ↔ `′1 H) with on-shell N1 are

already accounted for by decays and inverse decays. When the lepton doublets are

projected onto the flavor basis, subtraction of these rates to avoid double counting

must be carried out with care.

• The off-shell scatterings γsub
Ns , involving the (pole subtracted) s-channel and the u-

channel, as well as the t-channel scatterings γNt = γ(` ` ↔ H H), depend on all the

Kα
j projectors in a rather complicated way. However, since they are subdominant in

the temperature ranges we are interested in, they can be safely neglected.

In the temperature regimes in which the charged lepton Yukawa couplings become

non-negligible (T ¿ 1013 GeV), the corresponding interactions define a flavor basis for the
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lepton doublets. Then the decay rates and scattering processes involving the specific flavors

`i and anti-flavors ¯̀
i have to be considered, and the Boltzmann equations should track the

evolution of all the relevant single-flavor asymmetries. To obtain the appropriate set of

equations one can rely on the density operator approach discussed in [14]. One defines a

density matrix ρ as the difference between the density matrices for the leptons and for the

antileptons, so that ρii ∝ YLi
, and normalizes ρ so that

∑
i ρii = YL. A very useful property

of ρ is that the off-diagonal terms, ρij with i 6= j (the coherences) vanish whenever the

Yukawa interactions of one of the flavor states `i or `j are in thermodynamic equilibrium,

since this effectively projects the leptonic states present in the thermal bath onto those

aligned or orthogonal to the flavors characterized by non-negligible Yukawa interactions.3

Another property that we use is that if the population of one state vanishes, ρii = 0, then

all the coherences ρij associated with this state also vanish (this follows from e.g. the

inequality ρiiρjj ≥ |ρij |2 ). These properties allow one to restrict the general equation for

ρ to a subset of equations for the relevant flavor diagonal directions ρii = YLi
.

Following the approach outlined in [13], in writing down the Boltzmann equations we

account for all the particle densities that are relevant to the washout processes. Moreover,

in the evolution equations for the lepton flavor asymmetries we also include the term

dY EW
Li

/dz that formally accounts for the fact that electroweak sphalerons constitute an

additional source of lepton flavor violation. Then, for consistency, we also need to add the

equation dYB/dz = dY EW
B /dz to account for baryon number violation by the sphaleron

processes. Given that sphaleron interactions preserve the three charges ∆i ≡ B/3 − Li

associated to anomaly-free currents, it follows that Y EW
B /3 = Y EW

Li
. By subtracting the

equations for the lepton flavor densities from the equation for baryon number weighted

by a suitable factor 1/3, we obtain the following network of flavor dependent Boltzmann

equations:

dYN1

dz
=

−1

sHz

(
YN1

Y eq
N1

− 1

)
(γD + 2γSs + 4γSt) , (3.1)

dY∆i

dz
=

−1

sHz

{[(
YN1

Y eq
N1

− 1

)
εi
1 −

1

2
(y`i

+ yH)K0
i

]
γD

−
[
2y`i

+ (yt − yQ3
)

(
YN1

Y eq
N1

+ 1

)]
K0

i γSt −
[

YN1

Y eq
N1

y`i
+ yt − yQ3

]
K0

i γSs

}
, (3.2)

where we have used the standard notation z ≡ M1/T . In these equations, YN1
≡ nN1

/s

denotes the density of the lightest heavy neutrino (with two degrees of freedom) relative to

the entropy s, yX ≡ (nX −nX̄)/neq
X denote the asymmetries for the various relevant species

X = `, H, t, Q3 and all the asymmetries are normalized to the Maxwell-Boltzmann

3The transition region between the regimes where a specific lepton Yukawa coupling is completely negli-

gible, and the one in which it mediates reactions in full thermal equilibrium, that is when Yukawa reactions

for one specific flavor are approaching equilibrium, should be treated with care, since off diagonal entries

ρij in the density matrix might not be dumped fast enough to be neglected in the flavor dynamics [21].

However, within the temperature ranges in which the lepton Yukawa reactions for each flavor are fully in

equilibrium or strongly out of equilibrium, our Boltzmann equations can be safely applied.
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equilibrium densities. Notice that Y∆i
is the ∆i number density, also normalized to the

entropy, with YLi
= (2y`i

+ yei
)Y eq. The reaction rates are summed over initial and

final state quantum numbers, including the gauge multiplicities. In the asymmetries yX ,

X = `, H or Q3 label any of the two doublet components, not their sum, and hence we

normalize yX to the equilibrium densities with just one degree of freedom. This is different

from other conventions (e.g. the one used in [11]) and allows us to keep the proportionality

yX ∝ µX in terms of the chemical potentials, with the usual convention that e.g. µ`i
is the

chemical potential of each one of the two SU(2) components of the doublet `i. As already

said, the subdominant ∆L = 2 off-shell scatterings, and CP violation in (∆L = 1) 2 ↔ 2

processes [8, 9] have been neglected in eq. (3.2), and we make two further simplifications:

1. In eqs. (3.1)–(3.2) and in what follows we ignore finite temperature corrections to

the particle masses and couplings [11]. In particular we take all equilibrium number

densities neq
X equal to those of massless particles.

2. We ignore scatterings involving gauge bosons, for whose rates no consensus has been

achieved so far [11, 8]. They do not introduce qualitatively new effects and no further

density asymmetries are associated to them.

We would like to emphasize the following points regarding eq. (3.2):

1. The washout terms are controlled by the K-projectors. The sources of the asymme-

try, on the other hand, receive additional contributions from the ∆K’s. Note that

∆Ki is not simply proportional to the respective Ki (see eq. (2.7)). This has im-

portant consequences: when, for at least one flavor, ∆Ki/ε1
>∼ K0

i , the results are

qualitatively different from the case where, for all the flavors, ∆Ki/ε1 ¿ K0
i . In par-

ticular, the fact that the sign of ∆Ki can be opposite to that of the K0
i ε1 term opens

up the possibility that leptonic asymmetry-densities of opposite sign are generated.

2. Subtraction of the on-shell contributions from the s-channel N1 heavy neutrino ex-

change, that corresponds to ∆L = 2 s-channel scatterings, has to be performed with

care. The cross sections are flavor dependent: γ∆Li=2
Ns

(`iH → ¯̀
iH̄) changes Li by two

units, but other scatterings, γ∆Li=1
Ns

(`iH → ∑
j 6=i

¯̀
jH̄) change Li by only one unit.

Furthermore, differently from the unflavored case, the ∆L = 0 (∆Li = 1) channels,

γ∆Li=1
Ns

(`iH → ∑
j 6=i `jH), together with their asymmetries, must also be taken into

account. Moreover, through inverse processes the asymmetries in the flavors j 6= i do

affect the evolution of y`i
(this is similar to the way yH , yQ3

and yt act in the proper

∆Li = 1 channels in the second line of eq. (3.2)). Nevertheless, we see from eq. (3.2)

that the result of the subtraction agrees with what one would obtain by naively gen-

eralizing from the case of the flavor independent equation (see e.g. ref. [11]) to the

flavor dependent case.

3. Consider the case Ki = K̄i = 1 (and hence Kj 6=i = K̄j 6=i = 0). Then we have

Y∆j 6=i
= 0. Since YB−L =

∑
k Y∆k

, the equation for Y∆i
coincides (as expected)

with that for YB−L in the unflavored case, or in the cases with flavor alignment, see

eq. (13) in ref. [13].
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4. As a consequence of the sum-rules
∑

i Ki =
∑

i K̄i = 1 (that imply
∑

i ∆Ki = 0

and
∑

i εi
1 = ε1), the equation for YB−L =

∑
k Y∆k

has a simple form also in the

general case Ki 6= K̄i 6= 1: Similarly to the unflavored or aligned cases [13], this

equation depends on ε1 as the source term, and on a single asymmetry-density ỹ` ≡∑
i K

0
i y`i

. The weighted sum of asymmetries, ỹ`, represents the effective lepton

doublet asymmetry coupled to the washout of YB−L. Of course, all the complications

related with the flavor structure are now hidden in ỹ` whose detailed evolution is

determined by the additional equations that still depend explicitly on K0
i and εi

1.

However, as we will see, there is always a point in the K-space for which ỹ` ∝
YB−L. In this particular situation, the equation for YB−L decouples from the other

equations and can provide a simple representative one-flavor approximation to the

flavor dependent case, that still captures some of the main effects of flavor.

The network of equations eq. (3.1) and (3.2) can be solved after the densities y`i
(or ỹ`),

yH and yt−yQ3
are expressed in terms of the quantities Y∆j

with the help of the equilibrium

conditions imposed by the fast reactions, as described in the next section. The value of

B − L at the end of the leptogenesis era obtained by solving the Boltzmann equations

remains subsequently unaffected until the present epoch. If electroweak sphalerons go out

of equilibrium before the electroweak phase transition, the present baryon asymmetry is

given, assuming a single Higgs doublet, by the relation [22]

nB =
28

79
nB−L. (3.3)

If, instead, electroweak sphalerons remain in equilibrium until slightly after the electroweak

phase transition (as would be the case if, as presently believed, the electroweak phase

transition was not strongly first order) the final relation between B and B − L would be

somewhat different [23].

4. The equilibrium conditions

In this section we discuss the equilibrium conditions that hold in the different temperature

regimes which can be relevant to study flavor effects in leptogenesis. Since leptogenesis

takes place during the out of equilibrium decay of the lightest heavy right-handed neutrino

N1, i.e. at temperatures T ∼ M1, the relevant constraints that have to be imposed among

the different particle densities depend essentially on the value of M1. To allow for a

straightforward estimate of the importance of flavor, we chose the relevant temperature

windows as in ref. [13], where flavor effects were irrelevant because of the imposition of

alignment constraints, and also in presenting the results we follow closely that analysis.

We use the equilibrium conditions specific of each temperature regime to express y`i
, yH

and yt − yQ3
in terms of the Y∆j

’s.

4.1 General considerations

The number density asymmetries for the particles nX entering in eq. (3.2) are related to
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the corresponding chemical potentials through

nX − nX̄ =
gXT 3

6

{
µX/T fermions,

2µX/T bosons,
(4.1)

where gX is the number of degrees of freedom of X. For any given temperature regime

the specific set of reactions that are in chemical equilibrium enforce algebraic relations

between different chemical potentials [22]. In the entire range of temperatures relevant

for leptogenesis, the interactions mediated by the top-quark Yukawa coupling ht, and by

the SU(3) × SU(2) × U(1) gauge interactions, are always in equilibrium. Moreover, at

the intermediate-low temperatures in which flavor effects can be important, strong QCD

sphalerons are also in equilibrium. This situation has the following consequences:

• Equilibration of the chemical potentials for the different quark colors is guaranteed

because the chemical potentials of the gluons vanish, µg = 0.

• Equilibration of the chemical potentials for the two members of an SU(2) doublet

is guaranteed by the vanishing, above the electroweak phase transition, of µW+ =

−µW− = 0. This condition was implicitly implemented in eq. (3.2) where we used

µQ ≡ µuL
= µdL

, µ` ≡ µeL
= µνL

and µH ≡ µH+ = µH0 to write the particle number

asymmetries directly in terms of the number densities of the SU(2) doublets.

• Hypercharge neutrality implies
∑

i

(µQi
+ 2µui

− µdi
− µ`i

− µei
) + 2µH = 0 , (4.2)

where ui, di and ei denote the SU(2) singlet fermions of the i-th generation.

• The equilibrium condition for the Yukawa interactions of the top-quark µt = µQ3
+µH

yields:

yt − yQ3
=

yH

2
, (4.3)

where the factor 1/2 arises from the relative factor of 2 between the number asym-

metry and chemical potential for the bosons, see eq. (4.1).

• Because of their larger rates, QCD sphalerons equilibration occurs at higher tem-

peratures than for the corresponding electroweak processes, presumably around Ts ∼
1013 GeV [24 – 26]) and in any case long before equilibrium is reached for the τ Yukawa

processes. This implies the additional constraint
∑

i

(2µQi
− µui

− µdi
) = 0 . (4.4)

The condition in eq. (4.3) allows one to rewrite the r.h.s. of eq. (3.2) in terms of only

the two asymmetries y`i
and yH . To express these asymmetries in terms of the Y∆i

we

define two matrices C` and CH through the relations:

y`i
= −

∑

j

C`
ij

Y∆j

Y eq
, yH = −

∑

j

CH
j

Y∆j

Y eq
. (4.5)
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The matrices C` and CH constitute a generalization to the case of flavor non-alignment

of the coefficients c` and cH , introduced in [13]. The numerical values of their entries are

determined by the constraints among the various chemical potentials enforced by the fast

reactions that are in equilibrium in the temperature range (T ∼ M1) where the asymmetries

are produced. The Boltzmann equations in eq. (3.2) can now be rewritten as follows:

dY∆i

dz
=

−1

sHz

{(
YN

Y eq
N

− 1

)
εi
1 γD

+K0
i

∑

j

[
1

2

(
C`

ij + CH
j

)
γD +

(
YN

Y eq
N

− 1

) (
C`

ij γSs +
CH

j

2
γSt

)

+
(
2C`

ij + CH
j

)(
γSt +

1

2
γSs

)]
Y∆j

Y eq

}
. (4.6)

These equations are general enough to account for all the effects of the relevant spectator

processes (Yukawa interactions, electroweak and QCD sphalerons) as well as for a general

lepton flavor structure.

The fact that the consequences of flavor cannot be easily read off from the system of

coupled equations (4.6) impedes a simple comparison with the results of the unflavored

cases. We later show the results obtained by numerically integrating the set of coupled

equations. But, in order to get some insight into the results, it is possible to introduce an

approximation to the general equations (4.6) in the form of a one-flavor equation for YB−L

that accounts quite accurately for the numerical impact of flavor effects for two classes of

models:

1. Models in which N1 decays with approximately equal rates to all flavors (K0
i ≈ 1/nf

for all `i).

2. Models in which all the flavor asymmetries εi
1 are dominated by the term K0

i ε1 [see

eq. (2.7)].

From the discussion in section 2.2 it is clear that both kind of models have the common

feature of being sensitive only to CP violating effects of the type in eq. (2.1). The approx-

imation to be discussed below captures in full this type of effects, but it is blind to the CP

violating effects of the second type in eq. (2.2), and therefore does not yield reliable results

for the cases where the asymmetries are dominated by the effects of ∆K 6= 0.

We proceed as follows. We consider particular flavor structures leading to K0
i values

that satisfy the conditions
∑

i K0
i C`

ij = c̃`, independently of the value of j = 1, . . . nf . We

further introduce for the Higgs asymmetry an average coefficient c̃H ≡ ∑
j CH

j /nf and

neglect the terms δCH
j = CH

j − c̃H . (In all the cases that we consider δCH
j /c̃H

<∼ 15%).

Then, for this particular configuration, we can add the equations (4.6) over the flavors i to

obtain an equation for YB−L that is independent of flavor indexes:

dYB−L

dz
=

−1

sHz

{(
YN

Y eq
N

− 1

)
ε1 γD

+
YB−L

Y eq

[
1

2
(c̃` + c̃H) γD +

(
YN

Y eq
N

− 1

)(
c̃` γSs +

c̃H

2
γSt

)
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+ (2 c̃` + c̃H )

(
γSt +

1

2
γSs

)]}
. (4.7)

Of course, it is useful to proceed in this way only to the extent that this special case is

representative of a more general class of flavor configurations (corresponding e.g. to different

sets of Ki). As we will see, this is indeed true for the two classes of models mentioned

above. Since eq. (4.7) is similar in form to the one studied in ref. [13], where different

coefficients c` and cH corresponding to situations of flavor alignment were introduced, the

values of c̃` and c̃H will give, by direct comparison, a measure of the possible impact of

flavor effects in these models.

4.2 Specific temperature ranges and flavor structures

We now discuss the flavor effects in the various relevant temperature ranges. In order to

clearly show the impact of these effects, we conduct our analysis in a way that allows for

a meaningful comparison with our results in [13] in which - due to appropriate alignment

conditions — flavor issues played no role. Thus we use the same temperature windows

(below T ∼ 1013) as in [13], and (obviously) impose the same equilibrium conditions.

As explained above, some of our main results can be understood from the specific,

effectively one-flavor, cases that are described by eq. (4.7). These cases are presented in

table 1 and can be easily compared with the corresponding results in table 1 of [13]. In

the last column in table 1 we give the resulting B − L asymmetry. In the fourth and fifth

columns, we give the values of c̃` and c̃H . We remind the reader that the sum c̃` + c̃H gives

a crude scaling of the overall strength of the washout processes, while the ratio c̃H/c̃` gives

a rough estimate of the relative contribution of the Higgs asymmetry to the washout.

For more general flavor configurations that do not belong to the two classes of models

1 and 2 above, and for which the approximation in eq. (4.7) does not hold, we present

numerical results in a graphic form in figures 1 and 2. To disentangle the impact of the

various effects from that of the input parameters, the B−L asymmetry is calculated in all

cases with fixed values of m̃1 = 0.06 eV and M1 = 1011 GeV, where m̃1 ≡ v2(λλ†)11/M1

determines the departure from equilibrium of the heavy neutrino N1 and provides an overall

scale for the strength of the washout processes. The value m̃1 = 0.06 eV is intermediate

between the regime in which departures from equilibrium are large and all washout effects

are generally negligible (m̃1 < 10−3 eV) and the regime in which washout processes are so

efficient that often the surviving baryon asymmetry is too small (m̃1
>∼ 0.1 eV). The choice

of this value is also motivated by the atmospheric neutrino mass-squared difference if

neutrino masses are hierarchical. As concerns M1, it is clear that the relevant temperature

range is actually determined by it, yet we fix the value at M1 = 1011 GeV in order to

have a meaningful comparison of the various effects of interest. Namely, since in each

regime considered the same asymmetries are produced in the decay of the heavy neutrinos,

a comparison between the final values of B − L for the different cases can be directly

interpreted in terms of suppressions or enhancements of the washout processes. We assume

an initially vanishing value for YN and for all the particles density-asymmetries, but for

m̃1 > 10−2 eV the results are insensitive to the initial values. The values of the parameters

adopted here as well as the initial conditions are the same as in [13].
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Equilibrium processes, constraints, coefficients and B − L asymmetry

T (GeV) Equilibrium Constraints c̃` c̃H
|YB−L|
10−5ε1

B
=

0

1012÷13 hb, hτ

b = Q3 − H,
τ = `τ − H

}
K0

τ = 16

27

2

9

7

32
1.2

1011÷12 + EW-Sph
∑

i(3Qi + `i) = 0 K0
τ = 4

7

6

35

97

460
1.4

B
6=

0

108÷11 + hc, hs, hµ

c=Q2+H,
s=Q2−H,
µ=`µ−H




 K0
τ,µ = 19

53

5

53

47

358
2.5

¿ 108 all Yukawas hi K0
τ,µ,e = 1

3

7

79

8

79
3.0

Table 1: The temperature window is given in the first column, the relevant interactions in equilib-

rium in the second, and the constraints on the chemical potential in the third. (Chemical potentials

are labeled with the same notation used for the fields: µQi
= Qi, µ`i

= `i for the SU(2) doublets,

µui
= ui, µdi

= di, µei
= ei for the singlets and µH = H for the Higgs.) We also give in the third

column the K0
i -values that are compatible with eq. (4.7). The values of the coefficients c̃` and c̃H

are given in, respectively, the fourth and fifth column while the resulting B−L asymmetry (in units

of 10−5 × ε1) obtained for m̃1 = 0.06 eV and M1 = 1011 GeV is given in the last column.

The four different temperature regimes that we consider are distinguished by the ad-

ditional interactions that enter into equilibrium as the temperature of the thermal bath

decreases. Of course, the most important of these reactions will be those mediated by the

charged lepton Yukawa couplings.

1) Bottom- and tau-Yukawa interactions in equilibrium (1012 GeV <∼ T <∼ 1013 GeV).

Equilibrium for hb- and hτ -interactions implies that the asymmetries in the SU(2) singlet

b and eτ degrees of freedom are populated. The corresponding chemical potentials obey

the equilibrium constraints µb = µQ3
− µH and µτ = µ`τ

− µH . Possibly hb and hτ

Yukawa interactions enter into equilibrium at a similar temperature as the electroweak

sphalerons [24]. However, since the rate of the non-perturbative processes is not well

known, we first consider the possibility of a regime with only gauge, QCD sphaleron and the

Yukawa interactions of the whole third family in equilibrium. Since electroweak sphalerons

are not active, at this stage B = 0.

The lepton (`a, `b, `τ ) and antilepton (¯̀′a,
¯̀′
b,

¯̀
τ ) flavor bases are defined such that

〈`1|`b〉 = 〈¯̀′1|¯̀′b〉 = 0, and hence |〈`1|`a〉|2 ≡ Ka = 1 − Kτ and |〈¯̀′1|¯̀′a〉|2 ≡ K̄a = 1 − K̄τ .

The ‘prime’ labeling the a and b antilepton doublets is a reminder of the fact that in gen-

eral ¯̀′
a,b are not the CP conjugate states of `a,b. Even though the charged lepton Yukawa

interactions for both a and b states are negligible, the fact that Lb = ρbb′ = 0 ensures

that the off-diagonal entries ρab′ and ρba′ vanish. Given that Y∆b
/Y eq = 2y`b

= 0, the

set of eqs. (4.6) is reduced to just two relevant equations, and the equilibrium conditions
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B
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|
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|
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|
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|
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|
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|
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(a)

↓

(b)←

(c)

↓


(d) ↑

Case 2

Case 1

Figure 1: The value of the final |YB−L| (in units of 10−5|ε1|) as a function of K0
τ in the regimes

1 (solid lines) and 2 (dashed lines), computed with M1 = 1011 GeV and m̃1 = 0.06 eV. The filled

circles (regime 1) and squares (regime 2) give the aligned cases (K0
τ = 0, 1) discussed in ref. [13]

and the non-aligned cases given in the first two rows in table 1. The thick lines correspond to non-

aligned models for which ∆Kτ = 0, implying ετ
1/ε1 = K0

τ . The thin lines give an example of the

results for Kτ 6= K̄τ assuming ∆Kτ/2ε1 =
√

K0
τ/4. The corresponding values of ετ

1/ε1 are marked

on the upper x-axis. The arrows with labels (a),(b),(c) and (d) correspond to the four panels in

figure (2). Note that YB−L changes sign in (c).

(restricted to the a, τ subspace) lead to the following values for CH
i and C`

ij:

CH =
1

16
(3, 4) and C` =

1

32

(
16 0

1 12

)
. (4.8)

The effective one-flavor approximation to non-alignment for this regime (the first line

in table 1) corresponds to K0
τ = 16/27, as follows from the condition

∑
i Ki C

`
ij = c̃`

(i, j = a, τ). This value ensures ỹ ∝ YB−L, giving in this case c̃` = 2/9 (while c̃H =∑
j=a,τ CH

j /2 = 7/32). The enhancement of |YB−L| in our representative case is of about

60% with respect to the aligned cases [13] in the same temperature regime.

In figure 1 we display by a thick solid line the B − L asymmetry as a function of K0
τ .

This curve corresponds to Kτ = K̄τ and is obtained by numerical integration of the system

of equations (4.6). Three special cases are denoted with filled circles: The flavor-dependent

case with K0
τ = 16/27 (described in the table) and the flavor-aligned cases K0

τ = 0, 1

(discussed in [13]). Two features that are expected from the qualitative discussion in

section 2.2 are apparent in this figure: First, the effects of flavor misalignment are quite

insensitive to the particular value of K0
τ (as long as it is not too close to the alignment

conditions). Second, the one-flavor approximation (the filled circle at K0
τ = 16/27) provides

a good estimate of YB−L for generic values of K0
τ .
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In the more general cases where Kτ 6= K̄τ , several different parameters concur to

determine the final value of B−L. One way to explore the possible results in this case would

be to randomly sample the values of the Yukawa couplings and CP violating phases entering

the expressions for K0
τ,a, ∆Kτ,a and ε1 and present the results in the form of scatter plots.

However, to gain a qualitative understanding of the various possibilities, we proceed in a

simpler way. It is based on the fact that, if we take the tree-level N1 → `τH decay amplitude

to zero (λ1τ → 0) while keeping the total decay rates fixed [(λλ†)11 = const.], the τ -flavor

projector K0
τ vanishes as the square of this amplitude (∝ |λ1τ |2) while ∆Kτ vanishes

as the amplitude (∝ λ1τ ). This suggests to adopt, as a convenient ansatz, the relation

∆Kτ ∝
√

K0
τ also for finite values of K0

τ , allowing us to explore the interplay between the

contributions of ∆Kτ and of ε1K
0
τ to ετ

1 — see eq. (2.7) — as well as to εa
1 = ε1 − ετ

1 , by

means of a simple two-dimensional plot. To this aim, we take ∆Kτ/2ε1 = κτ

√
K0

τ and we

fix κτ to the representative value of 1/4. Thus, for the practical purpose of carrying out a

qualitative survey of the possible different situations, we adopt the following ansatz:

ansatz :
ετ
1

ε1
= K0

τ +
1

4

√
K0

τ . (4.9)

With respect to the hierarchy between the two different CP violating effects of eqs. (2.1)

and (2.2), this simple relation has the nice property of covering all the interesting possibil-

ities:

1. For K0
τ

<∼ 1/16, the two terms K0
τ ε1 and ∆Kτ are comparable in size.

2. For 1/16 <∼ K0
τ

<∼ 3/4, K0
τ ε1 and K0

aε1 dominate the respective asymmetries.

3. For K0
τ > 3/4, we enter a regime in which ∆Kτ/2 À K0

aε1 and, since ∆Ka = −∆Kτ ,

the asymmetry εa
1, that is largely dominated by the ∆Ka term, has now the opposite

sign with respect to ε1 and ετ
1 .

In figure 1 we show with the thin continuous line the results for this more general

case. On the upper x-axis we have marked for reference the value of ετ
1/ε1 corresponding to

each different value of K0
τ . The most peculiar features are the two narrow regions marked

with (b) and (d) where |YB−L| is strongly enhanced. The enhancement takes place at

values of K0
τ not far from alignment. In particular, the steep rise of |YB−L/ε1| close to

K0
τ ≈ 1 can reach values up to one order of magnitude larger than the vertical scale of

the figure. (Note, however, that the ansatz eq. (4.9) does not yield the required behavior

∆Ka = −∆Kτ = 0 for K0
a = 1 − K0

τ = 0, and therefore the thin lines in the plot should

not be extrapolated to K0
τ ' 1.) It is worth noticing that that the two peaks correspond to

values of YB−L/ε1 of opposite sign, since the asymmetry changes sign in (c). Qualitatively

similar effects occur in the lower temperature regimes discussed below, and therefore we

postpone the analysis of these results to section 5. As concerns the quality of our model

independent approximation, we see from figure 1 that, in this more general case, it can

provide a reasonable estimate of YB−L only for K0
τ ∼ K0

a ∼ 1/2, that is when N1 decays

with similar rates into `τ and `a.
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Given that the final value of YB−L depends linearly on ετ
1 (see eq. 2.8), we see from

eq. (2.7) that, for a fixed value of K0
τ , YB−L is linear in ∆Kτ . Therefore, from the two thick

and thin lines in figure 1 that respectively give YB−L/ε1 for ∆Kτ = 0 and for ∆Kτ/(2ε1) =

κτ

√
K0

τ , one can easily infer, for each K0
τ , the value of YB−L/ε1 corresponding to any other

value of ∆Kτ . In particular, by reflecting the thin line with respect to the thick one, one

can figure out the results one would obtain for κτ < 0.

2) Electroweak sphalerons in equilibrium (1011 GeV <∼ T <∼ 1012 GeV).

The electroweak sphaleron processes take place at a rate per unit volume Γ/V ∝
T 4α5

W log(1/αW ) [27 – 29], and are expected to be in equilibrium from temperatures of

about ∼ 1012 GeV, down to the electroweak scale or below [24]. Electroweak sphalerons

equilibration implies ∑

i

(3µQi
+ µ`i

) = 0 . (4.10)

As concerns lepton number, each electroweak sphaleron transition creates all the doublets

of the three generations, implying that individual lepton flavor numbers are no longer

conserved, regardless of the particular direction in flavor space along which the doublet

`1 and ¯̀′
1 lie. While the electroweak sphalerons induce Lb 6= 0, the condition ∆b = 0 is

not violated, and hence eqs. (4.6) still consist of just two equations for Y∆a and for Y∆τ .

As concerns baryon number, electroweak sphalerons are the only source of B violation,

implying that baryon number is equally distributed among the three quark generations,

that is B/3 in each generation. This modifies the detailed equilibrium conditions for the

quark chemical potentials. Besides these differences, the analysis follows closely the one

carried out in the previous regime. The coefficients CH
i and C`

ij are given by

CH =
1

230
(41, 56) and C` =

1

460

(
196 −24

−9 156

)
. (4.11)

In table 1 we give the values of c̃` and c̃H that correspond to the approximation in eq. ( 4.7).

For the models described by this approximation, flavor misalignment can induce an O(80%)

enhancement of the final B−L asymmetry compared to the aligned cases discussed in [13].

The source of this enhancement is mainly the suppression by a factor ∼ nf = 2 of the

washout processes that is apparent in the reduced value of c̃`. In figure 1 we give the final

value of |YB−L| as a function of K0
τ for ∆Kτ = 0 (thick dashed line) and for ∆Kτ 6= 0

(thin dashed line). The qualitative dependence of YB−L on K0
τ is quite similar to regime

1: If the only CP violating effects are of the type in eq. (2.1) (CP (¯̀′1) = `1), the results

are approximately independent of the particular value of K0
τ , while relaxing this condition

results again in a strong dependence on K0
τ and possibly strong enhancements. This

general case is again well approximated by the values of c̃` and c̃H given in the table when

K0
τ ∼ K0

a ∼ 1/2.

3) Second generation Yukawa interactions in equilibrium (108 GeV <∼ T <∼ 1011 GeV).

In this regime, hc, hs and, most importantly, hµ Yukawa interactions enter into equilib-

rium. Given that the electron remains the only lepton with a negligible Yukawa cou-

pling, the Yukawa interactions completely define the flavor basis for the leptons as well
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as for the antileptons (that are now the CP conjugate states of the leptons). Corre-

spondingly, the lepton asymmetries are also completely defined in the flavor basis. In this

regime, the coefficients C`
ij and CH

i projecting the asymmetries (y`e
, y`µ

, y`τ
) and yH onto

(Y∆e , Y∆µ , Y∆τ , ) are:

CH =
1

358
(37, 52, 52) and C` =

1

2148




906 −120 −120

−75 688 −28

−75 −28 688


 . (4.12)

For the approximation of eq. (4.7), the coefficient c̃` in table 1 is reduced by at least a factor

of three with respect to the values of c` in the aligned cases analyzed in [13], and the final

value of YB−L gets correspondingly enhanced. This is precisely the nf ∼ 3 enhancement

expected from the qualitative discussion in section 2.2. The estimate of YB−L based on the

one-flavor approximation is, again, rather precise for the class of models for which ∆Ki = 0,

independently of the particular values of K0
e,µ,τ (as long as they are not too close to 0 or 1,

where approximate alignment could induce effects that suppress YB−L). In the more general

case with ∆Ke,µ,τ 6= 0, the approximation is again reliable in the region of approximately

equal flavor composition for `1 and ¯̀′
1, that is around K0

e ∼ K0
µ ∼ K0

τ ∼ 1/3. As regards

regions in K space away from equal flavor composition, we expect that the enhancements

observed in the nf = 2 cases, that are especially large when one K0
i is small (see figure 1),

could be even larger in this case since now two flavor projectors can be simultaneously

small.

4) All SM Yukawa interactions and electroweak sphalerons in equilibrium (T ¿ 108 GeV).

Equilibration of the Yukawa processes for all quarks and leptons, including the electron,

occurs only at temperatures T < 106 GeV, which are too low to be relevant for leptogen-

esis (at least in the standard scenarios). We nevertheless analyze this regime, mainly for

the purpose of comparison with analysis that assume that all Yukawa interactions are in

equilibrium, but do not include the flavor effects [12, 13].

The coefficients CH and C` are given by

CH =
8

79
(1, 1, 1) and C` =

1

711




221 −16 −16

−16 221 −16

−16 −16 221


 . (4.13)

Given the symmetric situation of having all Yukawa interactions in equilibrium, the point of

equal flavor composition for the `
(′)
1 doublets (Ke = Kµ = Kτ = 1/3) defines a fully flavor-

symmetric situation for which Y∆τ = Y∆µ = Y∆e = YB−L/3. It is then straightforward

to see that this point corresponds to the condition ỹ` =
∑

i K
0
i y`i

= −c̃`YB−L/Y eq that

defines our one-flavor approximation. The symmetric situation implies that an exact pro-

portionality is also obtained for yH = −c̃HYB−L/Y eq (independent of the particular values

of K0
e,µ,τ ). In agreement with the qualitative analysis in section 2.2, flavor effects suppress

c̃` by the large factor 3.5 (∼ nf ) compared to the corresponding aligned case [13]. In the

cases restricted by ∆Ki = 0 for which the results of the one-flavor approximation hold,

the final value of YB−L is enhanced by a factor ∼ 2.5 with respect to the aligned case [13].

Again, much larger enhancements are possible if the condition Ki = K̄i is relaxed.
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5. Discussion

In this section we explain some generic features of our results. We refer here to results

that, while depending on the specific flavor structures, are qualitatively similar in all the

temperature regimes in which flavor effects are important. For the purposes of this discus-

sion, it is important the fact that in all the regimes considered the final Y∆i
asymmetries

are inversely proportional to the rates of the corresponding washout processes. This can

be demonstrated along lines similar to those given in appendix 2 of ref. [14] for YB−L. Note

that we have already used this result extensively for the qualitative discussion in section 2.2.

In all the temperature regimes where flavor effects are important (M1 ¿ 1013 GeV), the

washout rate having the strongest impact on the final value of the asymmetries is γNs , that

is the on-shell piece of the ∆L = 2 scattering (the term proportional to K0
i γD in the first

line of eq. (3.2)) that has a Boltzmann suppression factor exp(−z), similar to the ∆L = 1

rates. Hence, the proof given in ref. [14] for the case of ∆L = 1 washout dominance and

small departure from equilibrium, holds also for the cases considered here, and applies to

the single flavor density asymmetries as well.

As is written explicitly in eq. (2.8), the final values of the Y∆i
are determined by the

asymmetry parameters εi
1 and by the washout factors ηi. The washout factors are related to

the various lepton number violating processes of eq. (4.6) and hence depend on the factors

K0
i that control the overall strength of the washouts, as well as on the matrix coefficients C`

and CH defined in (4.5). However, the matrices C` in eqs. (4.8), (4.11), (4.12) and (4.13)

are approximately diagonal and the diagonal terms in each matrix are not very different

from each other (actually, for each temperature regime, C`
ii equals the value of c` in the

case that K0
i = 1, see [13]). If we make the crude approximations of (i) neglecting the

off-diagonal elements, and (ii) taking the diagonal elements equal (that is C` ∝ 1), and we

also note that the same Higgs asymmetry yH enters the equation for the different flavors,

we are led to conclude that the relative values of the ηi are determined mainly by the

values of the K0
i . More precisely, given that the amount of flavor-asymmetries surviving

the washout are, to a good approximation, inversely proportional to the washout rates, the

washout factors obey the approximate proportionality ηi ∝ 1/Ki. This results constitutes

the basis of the approximate expressions for nB/s in eq. (2.9) that allowed us to estimate

qualitatively all the most important effects of flavor. We rely again on this approximation

in the following discussion of the effects of different flavor structures and, in particular,

in our attempt to understand the different behaviors that are apparent from the points

labeled (a), (b), (c) and (d) in figure 1.

(a) This case is defined by the condition Ki = K̄i or, more generally, by the condition

∆Ki ¿ ε1 K0
i for all relevant i. As we have seen, in this case the final YB−L shows a

sizable enhancement with respect to the aligned cases in the same temperature regime,

and its value is approximately independent of K0
i . This behavior corresponds to the ∼ nf

enhancement discussed in section 2.2: since Ki = K̄i implies εi
1 = K0

i ε, it follows that,

to first approximation, each Y∆i
∝ εi

1 ηi (i = a, τ in regimes (1) and (2), i = e, µ, τ in

regimes (3) and (4)) is independent of K0
i and, moreover, that the final values of the Y∆i

-

asymmetries are in general quite similar. The enhancement of YB−L by a factor ∼ nf
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Figure 2: Y∆τ
/ε1 (short-dashed line), Y∆a

/ε1 (dotted line) and YB−L/ε1 (solid line) as a function

of z = M1/T computed with M1 = 1011 GeV and m̃1 = 0.06 eV, in the temperature regime 2. The

panels refer to the labels in figure 1. The examples include both a constrained case, ∆Kτ = 0 (a),

and general cases with ∆Kτ/2ε =
√

K0
τ/4 (b, c, d). The K0

τ value is (a) 0.1, (b) 0.02, (c) 0.84 and

(d) 0.98. Note that the vertical scale in (d) is doubled with respect to the other three cases.

with respect to the aligned cases [13] is indeed confirmed by the numerical results given

in table 1 (nf = 2 in regimes (1) and (2), nf = 3 in regimes (3) and (4)). This case is

illustrated in more detail in figure 2a. The figure shows the evolution of Y∆a and Y∆τ

with z in the regime 2, for K0
τ = 0.1. It is apparent that in spite of the large difference in

the values of K0
a and K0

τ , that result in quite different evolutions for the two asymmetries,

their final values are very similar and approximately equal to YB−L/2.

Note that this result relies in a crucial way on the assumption that the source terms

εi
1 and the washout rates are both proportional to K0

i . If this condition is not realized, as

in the general cases when K 6= K̄, more subtle effects become important in determining

the final values of the asymmetries Y∆i
and, as is apparent from figure 1, the final value of

YB−L acquires a rather strong dependence on the values of K0
i . Let us now discuss a few

examples of this more general case.

(b) In this case, ∆Kτ/2 and ε1 K0
τ are of the same order and of the same sign. The

details of this case are illustrated in figure 2 b where we present the behavior of Y∆τ and Y∆a

for K0
τ = 0.02, that corresponds to ∆Kτ/2ε =

√
K0

τ /4 ' 0.035. The picture explains rather

well the origin of the first peak, labeled with (b) in figure 1. We see that a deviation at the

level of just a few percent from exact alignment (K0
τ = 0) is sufficient to start populating the
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asymmetry in the τ flavor even if the rate, which is suppressed by K0
τ +

√
K0

τ /4 ∼ 1/20, is

rather small. For the first part of the leptogenesis era, Y∆τ gives only a minor contribution

to the total B −L asymmetry. However, while the washout in the direction `a(⊥ `τ ), that

is controlled by K0
a ≈ 1, proceeds with full strength, there is practically no washout for

the τ component and, eventually, while Y∆a ends up being almost completely washed out,

it is Y∆τ that determines the final value of B − L at the end of the leptogenesis era.

(c) This intriguing case corresponds to ετ
1ητ ≈ −εa

1ηa: The final values of the two

leptonic asymmetries are approximately equal in magnitude but of opposite signs. This

implies that YB−L can vanish even when lepton flavor asymmetries are sizable. Eq. (2.8)

helps us to understand this case in a simple way. Adopting the approximation ηi ∼ η/K0
i

discussed above we have:

εa
1ηa + ετ

1ητ ≈ η

[
2 ε1 −

(
1

1 − K0
τ

− 1

K0
τ

)
∆Kτ

2

]
. (5.1)

With our particular ansatz, ∆Kτ/2ε1 =
√

K0
τ /4, the r.h.s. of eq. (5.1) vanishes for K0

τ '
0.9, in qualitative agreement with the point labeled with (c) in figure 1. The evolution with

z of the flavor asymmetries is illustrated in figure 2 c. During most of the leptogenesis era,

YB−L is rather large. However, in the end its value is driven to zero, even if the final values

of the two lepton asymmetries remain quite sizable (about twice larger than case (a)). For

larger values of K0
τ the total asymmetry YB−L crosses zero and changes sign, and we enter

a different regime to be discussed next.

(d) In this example we have ∆Ka/2ε1 ' −0.25 and K0
a = 0.02, so that ∆Ka/2ε1 is much

larger in absolute value than K0
a , and is negative. This situation means that εa

1 has a sign

opposite to both ετ
1 and ε1. This case is illustrated in figure 2 d, in which the vertical scale

is doubled with respect to the previous three cases. Initially, a large density-asymmetry

starts being built in the τ flavor, due to the large value ετ
1/ε1 ∼ 1.23. However, its growth

is kept under control by the washout effects that, with K0
τ ≈ 1, are unsuppressed. In

contrast, for Y∆a the washout effects are strongly suppressed by K0
a ∼ 0.02 and eventually

this asymmetry largely prevails, driving YB−L to values several times larger than in all the

previous cases, and having opposite sign. Notice that in this case the difference in sign

between Y∆a and Y∆τ gives large cancellations between the respective contributions to the

asymmetry yH , and this implies that the Higgs washout effects are accordingly suppressed.

6. Conclusions

We have shown that the effects of flavor can have dramatic consequences in leptogenesis

scenarios. This occurs due to the way in which charged lepton Yukawa interactions in

thermal equilibrium affect the flavor composition of the leptonic density-asymmetries, that

determine the washout processes. For these effects to be significant, at least one leptonic

Yukawa interaction (hτ ) must be in equilibrium. This happens if M1, the lightest heavy

neutrino mass that determines the temperature at which leptogenesis takes place, is light

enough: M1 < 1013 GeV. Moreover, for the flavor effects to have an impact, one needs to

be in the strong washout regime: m̃1 > 2 × 10−3 eV.
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The main consequence of the flavor effects is that, in generic flavor non-aligned cases

with strong washouts, the final asymmetry is typically enhanced by a factor nf . We have

nf = 2 when just hτ is in equilibrium, i.e. for 109 GeV < M1 < 1013 GeV, and nf = 3

when also hµ is in equilibrium, i.e. for M1 < 109 GeV.

In addition to the total asymmetry ε1 associated to N1 decays, the individual asym-

metries εj
1 can play a crucial role. These flavor asymmetries introduce a qualitatively new

ingredient, ∆Kj, which is the contribution associated to the fact that the leptons and an-

tileptons produced in N1 decays are, in general, not CP conjugates of each other. When

these new contributions are non-negligible, much larger enhancements become possible, es-

pecially when at least one lepton flavor `j is weakly coupled to the decaying N1 (typically

this means K0
j ∼ η ¿ 1). Since the signs of ∆Kj and of ε1 need not be the same, the

final asymmetry can have a sign unrelated to that of ε1. Actually, successful leptogenesis

is possible even with ε1 = 0. Scenarios in which ε1 = 0 while εj
1 6= 0 entail the possibility

that the phases in the light neutrino mixing matrix U are the only source of CP violation.
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